Zhexiao Xiong

314-319-2407 | x.zhexiao@wustl.edu | Linkedin | Github | Webpage

EDUCATION

Washington University in St.Louis	St.Louis, MO, USA				
Tioniin University	Aug. 2022 - May 2027(expected)				
B.Eng. in Electrical and Information Engineering	Sep. 2018 – June 2022				
Research Experience					
Graduate Research Assistant	August. 2022 – Present				
Washington University in St.Louis	Advisor: Prof. Nathan Jacobs				
• Research on image synthesis, diffusion models, especially on outdoor scenes.					
• Research on stereo matching, depth estimation, optical flow estimation and domain adaptation.					
Computer Vision Research Intern	Febuary. $2022 - May. 2022$				
OPPO Research Institute, Beijing, China	Mentor: Dr.Bo Xu				
• Researched on image matting, proposed a framework to use human pose as guidance to achieve whole body matting.					
Undergraduate Research Assistant	Jan. 2021 – Jan. 2022				
Institute of Automation, Chinese Academy of Sciences, Beijing, China	Advisor: Prof. Jinqiao Wang				
• Researched on model compression and network pruning, especially the application on	Vision Transformer.				

PUBLICATIONS

Zhexiao Xiong, Xin Xing, Scott Workman, Subash Khanal, Nathan Jacobs. Mixed-View Panorama Synthesis using Geospatially Guided Diffusion. (In submission)

Zhexiao Xiong, Feng Qiao, Yu Zhang, Nathan Jacobs. StereoFlowGAN: Co-training for Stereo and Flow with Unsupervised Domain Adaptation, British Machine Vision Conference (BMVC), 2023.

Xin Xing, Zhexiao Xiong, Abby Stylianou, Srikumar Sastry, Liyu Gong, Nathan Jacobs. Vision-Language Pseudo-Labels for Single-Positive Multi-Label Learning, arxiv, 2023.

Nanfei Jiang, Zhexiao Xiong, Hui Tian, Xiaojie Du, Xu Zhao, Chaoyang Zhao*, Jinqiao Wang. PruneFaceDet: Pruning Lightweight Face Detection Network by Sparsity Training, Cognitive Computation and Systems, 2021.

Zhexiao Xiong, Xin Wen, Xu Zhao*, Haiyun Guo, Chaoyang Zhao, Jinqiao Wang. Two-level Iteration Method for Multi-task Learning with Task-isolated Labels, International Conference on Computer Vision and Pattern Analysis, 2021.

Research Interests

I am broadly interested in computer vision and multi-modal learning, especially generative models and their application in autonomous driving and remote sensing scenes, including cross-view & novel view synthesis, birds-eye-view perception, and fundamental computer vision problems such as stereo matching, optical flow estimation, depth estimation and domain adaptation.

Research Projects

Mixed-View Panorama Synthesis using Geospatially Guided Diffusion		03/20	023 - 11/2023	3
Washington University in St.Louis	Advisor:	Prof.	Nathan Jacob	s
• Use geospatial information to guide the diffusion model in mixed-view panoramas synthesis t	task.			

Co-training for Stereo and Flow with Unsupervised Domain Adaptation

Washington University in St.Louis

- Advisor: Prof. Nathan Jacobs • Built an end-to-end joint learning framework to combine unsupervised domain translation with optical flow estimation and stereo matching in the absence of real ground truth optical flow and disparity,
- Applied novel constraints on the cycle domain translation process to achieve cross-domain translation with global and local consistency.
- Employed task-specific multi-scale feature warping loss and iterative feature warping loss during the training phase to regulate the training process in both spatial and temporal dimensions.

Vision Transformer pruning

Institute of Automation, Chinese Academy of Sciences

03/2022 - 08/2022

01/2023 - 05/2023

- Advisor: Prof. Jinqiao Wang and Dr. Xu Zhao • Based on L_0 regularization, we proposed a unified framework that jointly applied masks on MSA and MLP layers, which reduce the number of parameters of the model without breaking the original structure of the model.
- Transfered our proposed structured pruning framework to downstream tasks and get the state-of-the-art performance, which does not require consuming computation resources on training on upstream datasets.

Mobile AI 2021 Real-Time Camera Scene Detection Challenge | Mobile AI Workshop @ CVPR 2021

- Used two-stage fine-tuning method to improve the accuracy and the model pruning method to improve the model's efficiency.
- Used the float32-to-int8 quantization and model pruning methods to optimize our model.

Programming: Python, C/C++, Java, Matlab **Deep Learning Frameworks:** Pytorch, Tensorflow **Languages:** English, Chinese